Home — Installation — Data — Methods — Guide — About
1) CALIPER Dataset 2) AdRI_Generator Dataset —
CALIPER Dataset
The biomarker data from the CALIPER study is available in this Shiny App in the CALIPER folder with the corresponding reference intervals. The data was brought into the appropriate format for the analysis.
- Albumin G (g/L)
- Albumin P (g/L)
- Alkaline Phosphatase (U/L)
- ALT (ACT) (U/L)
- ALT (U/L)
- Amylase (U/L)
- Apo A1 (g/L)
- Apo B (g/L)
- ASO (IU/mL)
- AST (ACT) (U/L)
- AST (U/L)
- Bilirubin Direct (µmol/L)
- Bilirubin-Total (T) (µmol/L)
- C3 (g/L)
- C4 (g/L)
- Calcium (mmol/L)
- ChE (U/L)
- Cholesterol (mmol/L)
- CO2 (carbon dioxide) (mmol/L)
- Creatinine (enzymatic) (μmol/L)
- Creatinine (Jaffe) (μmol/L)
- CRP (mg/L)
- GGT (U/L)
- Haptoglobin (g/L)
- IgA (g/L)
- IgG (g/L)
- IgM (g/L)
- Iron (μmol/L)
- LDH (LD) (U/L)
- Lipase (lip) (U/L)
- Magnesium (mmol/L)
- Phosphorus (mmol/L)
- Prealbumin (g/L)
- RF (rheumatoid factor) (IU/mL)
- Total Protein (g/L)
- Transferrin (TRF) (g/L)
- Triglyceride (mmol/L)
- UHDL (Ultra HDL) (mmol/L)
- Urea (mmol/L)
- Uric Acid (µmol/L)
AdRI_Generator Dataset
The generated data from the Shiny App AdRI-Generator can be used in this Shiny App no matter if it is generated with the help of the functions or for given reference intervals.
The Shiny App AdRI-Generator is a generator for creating age-dependent analyte data. Available are the following distributions: Normal-Distribution (NO
), Log-Normal-Distribution (LOGNO
), Box-Cox Cole & Green Distribution (BCCG
), Box-Cox t-Distribution (BCT
) and Box-Cox Power Exponential Distribution (BCPE
). The parameters μ (Mean), σ (Variance), ν (Skewness) and τ (Kurtosis) are changing over the patient age with a linear or an exponential function.
The linear function is: y = m*x + b
and the exponential y = a*e^(x*b)
.
The data can be downloaded as a CSV file. Negative values are deleted automatically. The generator save “Generator” as the stations-name and determines that all values are unique and have no gender. To add pathological cases (only by Normal-Distribution) a factor can be added to μ.